
Distribution A: Approved for Public Release; Distribution is Unlimited

MIL-STD-882E Applies to All Your Software

Not Just the Code You Write

11 August 2016

Naval Ordnance Safety and Security Activity (NOSSA)

Indian Head, MD

Douglas J. Bower

douglas.j.bower@navy.mil

(301) 744-6069

Distribution A: Approved for Public Release; Distribution is Unlimited 2

Opening Video

http://www.youtube.com/watch?v=gp_D8r-2hwk&sns=em
http://www.youtube.com/watch?v=gp_D8r-2hwk&sns=em

Distribution A: Approved for Public Release; Distribution is Unlimited 3

Class Objectives
• Based on the requirements put forth in MIL-STD-882E

• Function Hazard Analysis

• Software Criticality/Level of Rigor

• Conducting and documenting the results of the Software Safety

Analyses and Testing, including:

– Requirements Analysis

– Architecture Analysis

– Design Analysis

– Code Analysis

– In-depth Safety Specific Testing

• Operating Systems and Other Non-Developmental Software

• Assessing the Remaining Safety Risk attributed to the system

software

Using an example missile system developed by M&M Missile Company

Distribution A: Approved for Public Release; Distribution is Unlimited 4

Functional Hazard Analysis (FHA)

Purpose: The FHA is primarily used to identify and
classify the system functions and the safety
consequences of functional failure or malfunction,
(i.e. hazards (MIL-STD-882E).
• These consequences will be classified in terms of severity for the purpose of

identifying the safety-critical functions (SCFs), safety-critical item (SCIs), safety-
related functions (SRFs), and safety-related items (SRIs) of the system.

• SCFs, SCIs, SRFs, and SRIs will be allocated or mapped to the system design
architecture in terms of hardware, software, and human interfaces to the system.

• The FHA is also used to identify environmental and health related consequences of
functional failure or malfunction.

• The initial FHA should be accomplished as early as possible in the Systems
Engineering (SE) process to enable the engineer to quickly account for the physical
and functional elements of the system for hazard analysis purposes; identify and
document SCFs, SCIs, SRFs, and SRIs; allocate and partition SCFs and SRFs in the
software design architecture; and identify requirements and constraints to the design
team.

Distribution A: Approved for Public Release; Distribution is Unlimited 5

FHA Methodology

FHA considers the following to identify and evaluate functions within a system:

• Decomposition of the system and its related subsystems to the major

component level.

• Functional description of each subsystem and component identified.

• Functional description of interfaces between subsystems and

components. Interfaces should be assessed in terms of connectivity and

functional inputs and outputs.

• Hazards associated with loss of function, degraded function or

malfunction, or functioning out of time or out of sequence for the

subsystems, components, and interfaces. The list of hazards should

consider the next effect in a possible mishap sequence and the final

mishap outcome.

• An assessment of the risk associated with each identified failure of a

function, subsystem, or component.

Distribution A: Approved for Public Release; Distribution is Unlimited 6

FHA Methodology (continued)

• An assessment of whether the functions identified are to be

implemented in the design hardware, software, or human control

interfaces. This assessment should map the functions to their

implementing hardware or software components.

• Functions allocated to software should be mapped to the lowest level of

technical design or configuration item prior to coding (e.g., implementing

modules or use cases).

• An assessment of Software Control Category (SCC) for each Safety-

significant Software Function (SSSF). Assign a Software Criticality

Index (SwCI) for each SSSF mapped to the software design

architecture.

• A list of requirements and constraints (to be included in the

specifications) that, when successfully implemented, will eliminate the

hazard or reduce the risk. These requirements could be in the form of

fault tolerance, detection, isolation, annunciation, or recovery. (i.e.

Derived Requirements).

Distribution A: Approved for Public Release; Distribution is Unlimited 7

FHA Worksheet
Hazard

ID #

Life-Cycle

Phase
Activity

State/

Mode
Function

Functional

Failure

Hazard

Description

Identifier

used to

reference

specific

hazard

The life-cycle

phase for which

the risk and risk

assessment

apply

The actions

performed

within a life-

cycle phase

The State

and/or Mode

of the

system for

the hazard of

concern

The one of

the system

functions

(implicit,

implied or

derived)

The detailed

description for

the specific

failure mode of

the function

analyzed

The detailed

description of the

conditions under

which hazardous

energy may be

released in an

uncontrolled or

inadvertent way

Notes: 1 Assess severity for the system level mishap that could result from the failure of the function

2 Only applies to Software functions

3 Only applies to Hardware functions

System

Item(s)

Causal

Factor

Description

Mishap(s) Effect(s)
Existing

Mitigations

Software

Control

Category 2

Rationale

for SCC 2
Initial MRI 3/

SW Hazard

Severity 1

A functional or

physical portion

of a system

designed, used

or integrated to

accomplish one

aspect of the

system task or

mission

The detailed

description of

the failures,

conditions, or

events that

contribute either

directly or

indirectly to the

existence of a

hazard

The event or

series of events

where

hazardous

energy release

could negatively

effect

equipment,

personnel or

environment;

accident

The results of

the mishap to

include injury

or death,

damage to

equipment and

property, or

damage to the

environment

Controls that

are already

planned or

existing to

mitigate the

risk

The degree

of autonomy,

command

and control

authority, and

redundant

fault

tolerance of a

software

function in

context with

its system

behavior

Provide the

rationale for

the SCC as it

is not always

evident

The first

assessment of

the potential

risk of an

identified

hazard to

establish a

fixed baseline

for the hazard.

This may have

come from the

PHA

Software

Criticality

Index 2
Target MRI 3

Causal Factor

Risk Level

Recommended

Mitigations
Comments

Follow-On

Actions

The level of

analysis rigor

required for risk

assessment

defined by the

software

control

category and

the mishap

severity of the

MRI

The projected risk the

PM plans to achieve

by implementing one

or more of the

designated

recommended

mitigations. This field

should remain blank if

no recommended

mitigations are

identified

The projected

mishap risk level

associated with

the existence of

the specific

causal factor and

its potential to

realize the

hazard and

mishap

Controls that would reduce the

Mishap risk potential. The goal

should always be to eliminate the

hazard if possible. When a hazard

cannot be eliminated, the

associated risk should be reduced

to the lowest acceptable level by

applying the system safety design

order of precedence

Any important

information and

relevant

information not

captured

elsewhere

Assigned or

designated

actions

necessary to

identify or better

understand or

characterize

risk (e. g.,

perform FTA,

perform

software code

analysis)

Distribution A: Approved for Public Release; Distribution is Unlimited 8

FHA Worksheet

Hazard

ID #

Life-Cycle

Phase
Activity

State/

Mode
Function

Functional

Failure

Hazard

Description

Identifier

used to

reference

specific

hazard

The life-cycle

phase for which

the risk and risk

assessment

apply

The actions

performed

within a life-

cycle phase

The State

and/or Mode

of the

system for

the hazard

of concern

The one of

the system

functions

(implicit,

implied or

derived)

The detailed

description for

the specific

failure mode of

the function

analyzed

The detailed

description of the

conditions under

which hazardous

energy may be

released in an

uncontrolled or

inadvertent way

Distribution A: Approved for Public Release; Distribution is Unlimited 9

FHA Worksheet

Notes: 1 Assess severity for the system level mishap that could result from the failure of the function

2 Only applies to Software functions

3 Only applies to Hardware functions

System

Item(s)

Causal

Factor

Description

Mishap(s) Effect(s)
Existing

Mitigations

Software

Control

Category 2

Rationale

for SCC 2

Initial MRI
3/

SW Hazard

Severity 1

A functional or

physical

portion of a

system

designed,

used or

integrated to

accomplish

one aspect of

the system

task or

mission

The detailed

description of

the failures,

conditions, or

events that

contribute

either directly

or indirectly

to the

existence of

a hazard

The event or

series of

events where

hazardous

energy

release could

negatively

effect

equipment,

personnel or

environment;

accident

The results

of the

mishap to

include

injury or

death,

damage to

equipment

and

property, or

damage to

the

environme

nt

Controls

that are

already

planned or

existing to

mitigate the

risk

The degree

of

autonomy,

command

and control

authority,

and

redundant

fault

tolerance

of a

software

function in

context

with its

system

behavior

Provide the

rationale for

the SCC as

it is not

always

evident

The first

assessment

of the

potential risk

of an

identified

hazard to

establish a

fixed

baseline for

the hazard.

This may

have come

from the

PHA

Distribution A: Approved for Public Release; Distribution is Unlimited 10

FHA Worksheet

Notes: 1 Assess severity for the system level mishap that could result from the failure of the function

2 Only applies to Software functions

3 Only applies to Hardware functions

Software

Criticality

Index 2
Target MRI 3

Causal

Factor

Risk Level

Recommended

Mitigations
Comments

Follow-On

Actions

The level of

analysis rigor

required for

risk

assessment

defined by

the software

control

category and

the mishap

severity of

the MRI

The projected risk

the PM plans to

achieve by

implementing one

or more of the

designated

recommended

mitigations. This

field should

remain blank if no

recommended

mitigations are

identified

The projected

mishap risk

level

associated

with the

existence of

the specific

causal factor

and its

potential to

realize the

hazard and

mishap

Controls that would reduce

the Mishap risk potential. The

goal should always be to

eliminate the hazard if

possible. When a hazard

cannot be eliminated, the

associated risk should be

reduced to the lowest

acceptable level by applying

the system safety design

order of precedence

Any

important

information

and relevant

information

not captured

elsewhere

Assigned or

designated

actions

necessary to

identify or

better

understand

or

characterize

risk (e. g.,

perform FTA,

perform

software

code

analysis)

Distribution A: Approved for Public Release; Distribution is Unlimited 11

Example Missile System

• Application

– Examples and practical exercises using Robin

Hood Missile System (RHMS)

The RHMS is a software intensive system: all functions related to the

pointing and firing of missiles are under the control of software. The

RHMS consists of three major subsystems: the Bow Launcher, the

Arrow missile, and the Archer Fire Control System (AFCS).

Distribution A: Approved for Public Release; Distribution is Unlimited 12

Exercise #1

• Identify five Top-Level Mishaps associated

with the Robin Hood Missile System

(RHMS)

– Arrow Missile

– Bow Launcher

– Archer Fire Control System

Distribution A: Approved for Public Release; Distribution is Unlimited 13

Exercise #1

- Possible Answer

• Identify five Top-Level Mishaps associated

with the RHMS (Missile & Launcher)
1.Inadvertent/Early Ignition of Rocket Motor

2.Inadvertent Warhead Detonation

3.Loss of Flight Control

4.Missile Engages Incorrect Target

5.Launch Abort/Restrained Firing

… There are may be others.

Distribution A: Approved for Public Release; Distribution is Unlimited 14

Software Safety Criticality

• Degree to which the software has influence
on the safety related aspects of a system
– Level of Control

• Considers what other interlocks (both hardware and
separate independent software) exist in the system

• The ability of the software to assert the safety critical
actions of the system

– Mishap Severity
• Determined in the same manner as hardware or system

mishap severity

• Level of personnel injury and/or equipment damage

• Drives the level of rigor of analysis and
testing which needs to be applied

Distribution A: Approved for Public Release; Distribution is Unlimited 15

Level of Control

CategoriesLevel Name Description

1 Autonomous

(AT)

Software functionality that exercises autonomous control authority over potentially safety-significant hardware systems,

subsystems, or components without the possibility of predetermined safe detection and intervention by a control entity to

preclude the occurrence of a mishap or hazard. (This definition includes complex system/software functionality with

multiple subsystems, interacting parallel processors, multiple interfaces, and safety-critical functions that are time

critical.)

2 Semi-

Autonomous

(SAT)

Software functionality that exercises control authority over potentially safety-significant hardware systems, subsystems,

or components, allowing time for predetermined safe detection and intervention by independent safety mechanisms to

mitigate or control the mishap or hazard. (This definition includes the control of moderately complex system/software

functionality, no parallel processing, or few interfaces, but other safety systems/mechanisms can partially mitigate.

System and software fault detection and annunciation notifies the control entity of the need for required safety actions.)

Software item that displays safety-significant information requiring immediate operator entity to execute a predetermined

action for mitigation or control over a mishap or hazard. Software exception, failure, fault, or delay will allow, or fail to

prevent, mishap occurrence. (This definition assumes that the safety-critical display information may be time critical, but

the time available does not exceed the time required for adequate control entity response and hazard control.)

3 Redundant

Fault

Tolerant

(RFT)

Software functionality that issues commands over safety significant hardware systems, subsystems, or components

requiring a control entity to complete the command function. The system detection and functional reaction includes

redundant, independent fault tolerant mechanisms for each defined hazardous condition. (This definition assumes that

there is adequate fault detection, annunciation, tolerance, and system recovery to prevent the hazard occurrence if

software fails, malfunctions, or degrades. There are redundant sources of safety-significant information, and mitigating

functionality can respond within any time-critical period.)

Software that generates information of a safety-critical nature used to make critical decisions. The system includes

several redundant, independent fault tolerant mechanisms for each hazardous condition, detection, and display.

4 Influential Software generates information of a safety-related nature used to make decisions by the operator, but does not require

operator action to avoid a mishap.

5 No Safety

Impact

(NSI)

Software functionality that does not possess command or control authority over safety-significant hardware systems,

subsystems, or components and does not provide safety-significant information. Software does not provide safety-

significant or time sensitive data or information that requires control entity interaction. Software does not transport or

resolve communication of safety-significant or time sensitive data.

Distribution A: Approved for Public Release; Distribution is Unlimited 16

Mishap Severity

MIL-STD-882E: Table I.

Description Severity

Category

Mishap Result Criteria

Catastrophic 1 Could result in one or more of the following: death, permanent

total disability, irreversible significant environmental impact, or

monetary loss equal to or exceeding $10M.

Critical 2 Could result in one or more of the following: permanent partial

disability, injuries or occupational illness that may result in

hospitalization of at least three personnel, reversible significant

environmental impact, or monetary loss equal to or exceeding

$1M but less than $10M.

Marginal 3 Could result in one or more of the following: injury or occupational

illness resulting in one or more lost work day(s), reversible

moderate environmental impact, or monetary loss equal to or

exceeding $100K but less than $1M.

Negligible 4 Could result in one or more of the following: injury or occupational

illness not resulting in a lost work day, minimal environmental

impact, or monetary loss less than $100K.

Distribution A: Approved for Public Release; Distribution is Unlimited 17

Software Safety Criticality Matrix

Software Safety Criticality Matrix

Severity Category

Software

Control

Category

Catastrophic

(1)

Critical

(2)

Marginal

(3)

Negligible

(4)

1 SwCI 1 SwCI 1 SwCI 3 SwCI 4

2 SwCI 1 SwCI 2 SwCI 3 SwCI 4

3 SwCI 2 SwCI 3 SwCI 4 SwCI 4

4 SwCI 3 SwCI 4 SwCI 4 SwCI 4

5 SwCI 5 SwCI 5 SwCI 5 SwCI 5

SwCI Level of Rigor

SwCI 1
Program shall perform analysis of requirements, architecture, design, and code; and
conduct in-depth safety-specific testing.

SwCI 2
Program shall perform analysis of requirements, architecture, and design; and conduct in-
depth safety-specific testing.

SwCI 3
Program shall perform analysis of requirements and architecture, and conduct in-depth
safety-specific testing.

SwCI 4 Program shall conduct safety-specific testing.

SwCI 5
Once assessed by safety engineering as Not Safety, then no safety specific analysis or
verification is required.

Distribution A: Approved for Public Release; Distribution is Unlimited 18

• MIL-STD-882E describes the software

safety in the context of “software

contribution to system risk”

– To avoid the misconception that software

analyses are performed without system context

– To ensure all software safety issues have

clearly defined system mishap context

What is the process for defining

software contribution to system risk?

Software Contribution to System Risk

Distribution A: Approved for Public Release; Distribution is Unlimited 19

• To define software contribution to system risk:

1. Flow the system level SSFs to the software function

• Determines which software functions contribute to the SSF

• Performed during the FHA (typically) or PHA

2. Evaluate each software-safety function for mishap severity potential

(i.e., Catastrophic, Critical, Marginal, or Negligible)

• Utilizing the hazards from previous analyses (e.g., PHA, SSHA)

3. Evaluate each software safety function for level of autonomy

(i.e., SCC 1-5)

4. Derive the SwCI and associated LOR tasks using MIL-STD-882E Table V

5. Execute the LOR:

• Safety in software design, development, and verification processes

• Software safety analytical and verification tasks

6. All identified risk is defined and associated to hazard and system level mishaps

Software Contribution to System Risk

Distribution A: Approved for Public Release; Distribution is Unlimited 20

Exercise #2

• Perform a preliminary Functional Hazard

Analysis (FHA) of the Arrow Missile in the

context of the Robin Hood Missile System

(RHMS)

• Based on the information provided in the

handouts

Distribution A: Approved for Public Release; Distribution is Unlimited 21

FHA Worksheet

Hazard

ID #

Life-Cycle

Phase
Activity

State/

Mode
Function

Functional

Failure

Hazard

Description

1 Tactical

Operation

Missile

engage-

ment

Post launch Boost Phase

Autopilot

Operates out

of sequence

Loss of flight control

before safe

separation from

launch platform

2 Tactical

Operation

Missile

engage-

ment

Mid course Mid course

guidance

Fails to

operate

Loss of flight control

after safe separation

3 Tactical

Operation

Missile

engage-

ment

Terminal Navigation Operates at

wrong time

Navigation error

results in erroneous

flight path

Distribution A: Approved for Public Release; Distribution is Unlimited 22

FHA Worksheet

Notes: 1 Assess severity for the system level mishap that could result from the failure of the function

2 Only applies to Software functions

3 Only applies to Hardware functions

System

Item(s)

Causal

Factor

Description

Mishap(s) Effect(s)
Existing

Mitigations

Software

Control

Category 2

Rationale

for SCC 2

Initial MRI
3/

SW Hazard

Severity 1

Autopilot Incorrect

command

generated by

the autopilot

Loss of flight

control prior

to safe

separation

Death or

severe

injury to

personnel

None -

Software is

operating

autonomous

ly

1 Software

has

complete

control of

missile flight

I

Fletching

guidance and

control unit

(FGCU)

Incorrect

guidance

commend

given to

autopilot

Loss of flight

control after

safe

separation

Loss of

missile

Self

destruct

capability

2 Errant

missile will

self destruct

III

Navigation

System

Incorrect

missile

location sent

to FGCU

Missile

engages

wrong target

Death or

severe

injury to

personnel

Navigation

system has

GPS and

inertial

guidance

2 All

contained

within same

software

component

I

Distribution A: Approved for Public Release; Distribution is Unlimited 23

FHA Worksheet

Notes: 1 Assess severity for the system level mishap that could result from the failure of the function

2 Only applies to Software functions

3 Only applies to Hardware functions

Software

Criticality

Index 2
Target MRI 3

Causal

Factor

Risk Level

Recommended

Mitigations
Comments

Follow-On

Actions

1 N/A

3 N/A

1 N/A

Distribution A: Approved for Public Release; Distribution is Unlimited 24

Exercise #3
• For these three functions determine the specific types of

analysis and testing to be performed

Software Analysis Worksheet

Software

Function

Associated

Hazard

Software

Control

Category

Hazard

Severity
SwCI

Level of Rigor

Tasks Required

Boost Phase

Autopilot N/A 1 I 1

Mid course

guidance
N/A 2 III 3

Navigation N/A 2 I 1

Distribution A: Approved for Public Release; Distribution is Unlimited 25

Exercise #3
• For these three functions determine the specific types of

analysis and testing to be performed

Software Analysis Worksheet

Software

Function

Associated

Hazard

Software

Control

Category

Hazard

Severity
SwCI

Level of Rigor

Tasks Required

Boost Phase

Autopilot N/A 1 I 1

Requirements, architecture,

design, and code analysis; and

conduct in-depth safety-specific

testing

Mid course

guidance
N/A 2 III 3

Requirements and architecture

analysis; and conduct in-depth

safety-specific testing

Navigation N/A 2 I 1

Requirements, architecture,

design, and code analysis; and

conduct in-depth safety-specific

testing

Distribution A: Approved for Public Release; Distribution is Unlimited 26

Exercise #3 - Discussion

• For these three functions determine the

specific types of analysis and testing to be

performed

– After completing actions in Ex #3, how would

the results of the application of the LoR be

documented

Distribution A: Approved for Public Release; Distribution is Unlimited 27

System

Definition and

Software Safety

Planning

Software

Requirements

Hazard Analysis
(SwCI 1-3)

Software

Design Hazard

Analysis
(SwCI 1-2)

Formal

Review

Start

Fleet Release

Top-Level Process

Regression

Testing

Defect

ResolutionSub-Process
Fleet Anomaly

Reporting

Software Criticality Matrix

Software

Architectural

Hazard Analysis
(SwCI 1-3)

Determine

Software

Criticality Index

(SwCI)

Code Level

Hazard

Analysis
(SwCI 1)

Software Testing and

Verification
(SwCI 1-4)

In-depth Safety - Specific

Testing
(SwCI 1-3)

Safety - Specific

Testing
(SwCI 4)

Operator

Documentation

Safety Review

Software Safety Analysis and Verification Process

Distribution A: Approved for Public Release; Distribution is Unlimited 28

SwCI (1,2, and 3) LOR Task:

SW Requirements Hazard Analysis
• Safety Requirements Hazard Analysis (SRHA) is performed on SW as

part of the Low-Level SRHA to ensure that there are adequate safety

requirements associated with safety-significant SW functionality

– SW Safety Requirements Trace from System-Level > Sub-System Level >

Software Requirements. New safety requirements are derived per SRHA process

• Three Categories of SW Safety Requirements are:
– Initiating Software Safety Requirements (ISSRs)

• SW Requirements related to the SSFs that may initiate hazards if not defined and implemented

appropriately

– Generic Software Safety Requirements (GSSRs)

• Are designed features, constraints, development processes and coding standards that are generally

used with SW

– Mitigating Software Safety Requirements (MSSRs)

• These requirements mitigate or control mishap or hazard causes to acceptable levels of safety risk

with regards to the system’s SW

• Safety Requirements Verification Matrix (SRVM)

– SRVM documents SW Safety Requirements analysis/test results

Distribution A: Approved for Public Release; Distribution is Unlimited 29

SwCI (1,2, and 3) LOR Task:

Architectural Hazard Analysis

• Architectural Analysis

– SW Architecture - The organizational structure of a system or

Computer Software Configuration Item (CSCI), identifying its

components, their interfaces, and concept of execution among

them [Reference Allied Ordnance Publication (AOP)-52]

– Conducting computing system and software architectural hazard

analysis:

• Identify/Define the allocation of System Functions to Architecture

• Identify/Define the Software and Interface Architecture Requirements

• Reviewing architecture against software safety-significant

requirements (SSRs) and Hazard Tracking Record (HTR) software

mitigations to determine which cannot be supported by the current

architectures

• Identify new architecture hazards and define supported mitigations

Distribution A: Approved for Public Release; Distribution is Unlimited 30

SW Architectural Diagrams

• Various architectural views per International Organization

for Standardization (ISO)/International Electrotechnical

Commission (IEC)/Institute of Electrical and Electronics

Engineers (IEEE) 42010 (IEEE 1471):

– Functional/logical viewpoint

– Code/module viewpoint

– Development/structural viewpoint

– Concurrency/process/runtime/thread

viewpoint

– Physical/deployment/installation viewpoint

– User action/feedback viewpoint

– Data view/data model

Architectural Analysis is conducted on available documents

(requirements and views) and generic requirements

Distribution A: Approved for Public Release; Distribution is Unlimited 31

Exercise #4

• For RHMS, develop a top-level

architecture diagram for the Arrow Missile,

based on the information provided in the

handout

Distribution A: Approved for Public Release; Distribution is Unlimited 32

Exercise #4

• For RHMS, develop a top-level architecture diagram for Arrow Missile,

based on the information provided in the handout

Arrow Missile

Fletching Guidance System

Bull’s Eye

Fuzing

Subsystem

Fletching

Guidance and

Control Unit

Warhead Section

Propulsion Section

Autopilot

Navigation

System

Aft

Receiver

ESAD

Distribution A: Approved for Public Release; Distribution is Unlimited 33

SwCI (1 and 2) LOR Task:

SW Design Hazard Analysis
• SW Design Analysis

– SW Design - The characteristics of a system or CSCI that are selected by

the developer in response to the requirements. Some will match the

requirements; others will be elaborations of requirements, such as

definitions of all error messages; others will be implementation related,

such as decisions, about what software units and logic to use to satisfy

the requirements. [Reference AOP-52]

• Conducting SW Design Hazard Analysis:

– Identify/Define allocation of System Functions to SW Design

– Identify the correlating SW Interface Design Requirements

– Review design against software SSRs and HTR software mitigations to

determine which cannot be supported by the current design

– Identify new design hazards and define supported mitigations

Distribution A: Approved for Public Release; Distribution is Unlimited 34

Relationship between

Architecture and Design Analysis

• Software architecture defines the design constraints so it

will be available for use in detailed design

• Analysis of architecture can detect hazards early, when

they can be economically mitigated

• Software architecture drives software design, but actual

design may exceed architectural intent or fall short

– Shortfalls with safety impact require risk assessment and (likely)

new mitigations

• Safety analysis approach [architecture and design] similar

but at different levels of abstraction

– SSRs are evaluated on 2-pass approach, architectural then

design

Distribution A: Approved for Public Release; Distribution is Unlimited 35

Joint Software System Safety Engineering

Handbook (JSSSEH) Generic Requirements
• E.8.5 Data Transfer Messages

• Data transfer messages shall be of a predetermined format and

content. Each transfer shall contain a word or character string

indicating the message length (if variable), the type of data, and

the content of the message. At a minimum, parity checks and

checksums shall be used for verification of correct data transfer.

CRCs shall be used where practical. No information from data

transfer messages shall be used prior to verification of correct

data transfer.

• E.3.13 Positive Feedback Mechanisms

• Software control of critical functions shall have feedback

mechanisms that give positive indications of the function’s

occurrence.

- Use each generic requirement to assess the architectural intent

- If generic requirements are not supported in architecture, may represent risk

- If generic requirements are supported in the architecture, record as planned

mitigations for hazards

Analyze architecture

to ensure it supports

verification of safety

data

Analyze architecture

to ensure it supports

positive feedback for

safety functions

Distribution A: Approved for Public Release; Distribution is Unlimited 36

Exercise #5

• For RHMS, complete a design analysis for

the Fletching Guidance and Control

Unit, based on the information provided in

the handout

Distribution A: Approved for Public Release; Distribution is Unlimited 37

Exercise #5
• For RHMS, complete a design analysis for the Fletching Guidance and

Control Unit, based on the information provided in the handout

Get

Position

Data

Navigation System

Determine

Course

Correction Data

Get

Target

Update

Aft Receiver

Autopilot
Send Course

Corrections

At Target

?

No Yes

Send ‘Good

Guidance” and

‘Warhead

Detonate’

ESAD

Distribution A: Approved for Public Release; Distribution is Unlimited 38

Outline

Perform Code Analysis (Coding experience not necessary, but helpful)

• Data Structure Analysis

• Data Flow Analysis

• AOP-52 Compliance

• Software Safety Analysis and Verification Process Flow

Distribution A: Approved for Public Release; Distribution is Unlimited 39

Data Flow Analysis

• The purpose of data flow analysis is to identify errors

in the use of data that is accessed by multiple

routines

• The following are some examples of errors that can

be found via data flow analysis:

– Data which is utilized by a system prior to

being initialized

– Unused data items

– Unintended data item modification

– Failure to accurately update or modify data

items

Distribution A: Approved for Public Release; Distribution is Unlimited 40

AOP-52 Compliance Assessment

• The purpose of conducting a compliance assessment is to

ensure the code follows a set of coding standards. Non-

compliance could result in errors that could lead to

potential safety impact.

• Compliance requirements can come from a multitude of

sources, with AOP-52 and JSSSEH being two of them.

• Three generic requirements from AOP-52 will be the

discussed in this last exercise.

Distribution A: Approved for Public Release; Distribution is Unlimited 41

AOP-52 Compliance Assessment

Definition of Terms

Term Definition

Flags and

Variables

Flags and variable names shall be unique.

Flags and variables shall have a single purpose and

shall be defined and initialized prior to use.

Execution Path Safety Critical Computing System Functions (SCCSFs) shall

have one and only one possible path leading to their execution.

Conditional

Statements

Conditional statements shall have all possible conditions

satisfied and be under full software control (i.e., there shall be

no potential unresolved input to the conditional statement).

Conditional statements shall be analyzed to ensure that the

conditions are reasonable for the task and that all potential

conditions are satisfied and not left to a default condition. All

condition statements shall be annotated with their purpose and

expected outcome for given conditions.

Distribution A: Approved for Public Release; Distribution is Unlimited 42

SwCI (1-4) LOR Task:

SW Testing and Verification

Software Safety Testing
 Testing should address not only performance-related SW Requirements, but the

SW Safety Significant Requirements as well

• The minimum level of software safety testing depends upon the LOR performed

on the associated SW SSF:

– Two types of Software Testing - MIL-STD-882E Table V defines the LOR where In-

Depth Safety-Specific Testing (LOR SwCI 1-3) and Safety-Specific Testing (LOR SwCI

4) are required

– In all cases:

• Safety input required to the test plan to ensure test and verification of safety significant

software (i.e., Participate in or Witness Testing)

• Safety Testing should be conducted at Unit, CSCI, (Sub-)System Level, and Test Coverage

Analysis

• Leads to Verification and Validation of SW SSR implementation
– Results recorded in SRVM for LOR SwCI 1-3 only

• Test Plans and Test Reports provide documentation for safety engineer to cite

during final risk assessment

Distribution A: Approved for Public Release; Distribution is Unlimited 43

Examples of SW Safety

Specific Testing (SwCI 4)

• Endurance Testing - Demonstrate the ability of the system to run for

a defined period of time without failing (Defined in JSSSEH 4.4.2.6.)

• User Interface Tests - Verify the functionality of the user interface

(Defined in JSSSEH 4.4.2.7.)

• Fault Insertion and Failure Testing - Provide assurance that the

software will safely respond to various faults or failures in the

hardware and software (Defined in JSSSEH 4.4.2.8.)

• Safety injected into: Functional Testing, Physical Testing

• Go/No-Go Path Testing - Verify required functionality works in the

go-path scenario and with failures incurred

• Human Integration Testing - Ensure the operator can safety

manage the equipment and workload

• Regression Testing - Assures modifications to the SW do not

adversely affect the functionality

Distribution A: Approved for Public Release; Distribution is Unlimited 44

Examples of SW In-Depth Safety -

Specific Testing (SwCI 1-3)

• In addition to Safety Specific Testing, In-Depth Safety

testing may include:
Path Coverage Testing - Ensure every possible path in the code is executed at least

once (Defined in JSSSEH 4.4.2.3.)

Requirements-Based Testing - Verify software implements the high-level

requirements (Defined in JSSSEH 4.4.1.2. and 4.4.2.1.)

Statement Coverage Testing - Verify the “success” path of an IF statement in code is

exercised (Defined in JSSSEH 4.4.2.4.)

Mutation Testing - Modify code to achieve a specific testing objective

Perturbation Testing - Variation of mutation testing in which test team “perturbs” the

execution environment to determine the reaction of software

Safety injected into Exception Handling, Boundary Handling, and Data Rates Testing

Stress Testing - Verify the ability of the system to function under high stress

conditions

 Stability/Endurance Testing - Demonstrate the ability of the system to run for a

defined period of time without failing (Defined in JSSSEH 4.4.2.6.)

Distribution A: Approved for Public Release; Distribution is Unlimited 45

System

Definition and

Software Safety

Planning

Software

Requirements

Hazard Analysis
(SwCI 1-3)

Software

Design Hazard

Analysis
(SwCI 1-2)

Formal

Review

Start

Fleet Release

Top-Level Process

Regression

Testing

Defect

ResolutionSub-Process
Fleet Anomaly

Reporting

Software Criticality Matrix

Software

Architectural

Hazard Analysis
(SwCI 1-3)

Determine

Software

Criticality Index

(SwCI)

Code Level

Hazard

Analysis
(SwCI 1)

Software Testing and

Verification
(SwCI 1-4)

In-depth Safety - Specific

Testing
(SwCI 1-3)

Safety - Specific

Testing
(SwCI 4)

Operator

Documentation

Safety Review

Software Safety Analysis and Verification Process

Distribution A: Approved for Public Release; Distribution is Unlimited 46

SW Safety Formal Review

• Formal Review - is done to provide documented

evidence that the software contribution to system

risk is defined and all remaining risks are accepted

– This review is done after the LOR tasks have been completed and the

System risk is updated with SW contribution and documented within

the context of a Safety Assessment Report (SAR) and Mishap

Assessment Report (MAR)

– OQE that substantiates the completion of all LOR tasks must be

provided in the Technical Data Package. NOTE: This is not merely a

checklist of task completion, but is the actual analytical products.

– The system risk, including SW’s contribution, is presented within a

Technical Data Package for review by the appropriate Safety

Authority

Distribution A: Approved for Public Release; Distribution is Unlimited 47

Operating Systems and Other Non-

Developmental Software

• Operating System and Development

Environment Considerations

• WIN 10 Specific Considerations

Distribution A: Approved for Public Release; Distribution is Unlimited 48

Operating System and Development

Environment Considerations

• COTS Operating Environment

• COTS Hardware Impacts

• Programming Language

• Development Paradigm

• COTS Software Hazards

Distribution A: Approved for Public Release; Distribution is Unlimited 49

 COTS Interoperability Hazard Analysis

 Ensure the safety requirements for the COTS Operating
Environment (OE) software are addressed in the
System Requirements

 Ensure proactive involvement of Safety in COTS OE
software selection

COTS Operating Environment

Distribution A: Approved for Public Release; Distribution is Unlimited 50

 Potential COTS OE impacts to safety

 Message delivery – How will safety critical message
delivery be guaranteed in the COTS OE?

 Initialization / Failover / Faildown (casualty
configurations) – How will safety critical state
information be maintained throughout the system
through initialization, failover, and faildown conditions?

COTS Operating Environment

Distribution A: Approved for Public Release; Distribution is Unlimited 51

 Key steps for COTS Interoperability Hazard Analysis:

 Analyzing functional & behavioral characteristics of COTS

 Analyzing dead, unused, or inactivated options in COTS

 Linking hazards/causal factors to COTS requirements
(and the reverse)

 Developing mitigation requirements for COTS

 Establishing COTS level of rigor

Emphasis should be placed on identifying mitigations
related to safety critical message delivery and in software
initialization, failover, and faildown during safety critical
system events.

COTS Operating Environment

Distribution A: Approved for Public Release; Distribution is Unlimited 52

 Key steps for Design & Implementation Hazard Analysis:

 Matching existing hazards to COTS

 Analyzing COTS for introduction of new hazards

 Analyzing COTS in the system interfaces

 Developing new or modified requirements and software
safety test cases

 Creating and coordinating mitigations and test cases

 Documenting special COTS implementation safety
requirements and COTS SCI

Emphasis should be placed on ensuring adequate
mitigations to ensure safety critical message delivery and
safe software initialization, failover, and faildown.

COTS Operating Environment

Distribution A: Approved for Public Release; Distribution is Unlimited 53

 Key steps for Software Test & Validation:

 Supporting software and integration testing

 Providing safety support for IV&V

 Verifying new or modified safety requirements and
safety related functions

 Providing evidence to support safety analysis and
verification of the COTS operating environment changes

Emphasis should be placed on testing mitigations that
ensure safety critical message delivery and in software
initialization, failover, and faildown during safety critical
system events.

COTS Operating Environment

Distribution A: Approved for Public Release; Distribution is Unlimited 54

 Key steps for Regression Testing:

 Analyzing safety functionality and safety data and
structure to be maintained through any change

 Developing new or modified tests to verify and validate
safety functionality and safety data and structure

Emphasis should be placed on testing mitigations that
ensure safety critical message delivery and in software
initialization, failover, and faildown during safety critical
system events.

COTS Operating Environment

Distribution A: Approved for Public Release; Distribution is Unlimited 55

 Key steps for Analysis and Verification:

 Supporting customer integration and certification
testing

 Providing safety evidence for safety review authority to
support request for operational use

Emphasis should be placed on documenting validated
mitigations that ensure safety critical message delivery
and in software initialization, failover, and faildown during
safety critical system events.

COTS Operating Environment

Distribution A: Approved for Public Release; Distribution is Unlimited 56

 Return to Design & Implementation Hazard Analysis

 Ensure the safety requirements for any COTS hardware
are addressed in the System Requirements

 Ensure proactive involvement of Safety in COTS
hardware selection

COTS Hardware Impacts

Distribution A: Approved for Public Release; Distribution is Unlimited 57

COTS Hardware Impacts

 Key potential COTS Hardware impacts to safety:

 Data marshalling of legacy messages (big endian/little
endian word and bit conversion of legacy data fields)

 Hand-crafted, message-specific data marshalling might be
needed

 Potential for scrambling data fields in legacy messages

 Potential for introduction of unacceptable latencies to
message processing between big and little endian
processors

 Equipment management (detecting and responding to
equipment failures)

 What are potential safety impacts of equipment failures?

 How will equipment failures be handled? (automatically?
operator alert?)

 How will mitigations be tested?

Distribution A: Approved for Public Release; Distribution is Unlimited 58

COTS Hardware Impacts

 Key potential COTS Hardware impacts to safety (cont’d):

 Replacement of legacy interfaces with COTS

 Potential loss of legacy protocols/ message validation

 Potential for introduction of unacceptable latencies with
introduction of NICs, etc. (more “hops” in the
communications)

 Potential negative latency impacts from loss of hard-
wired, private, point-to-point communications

Distribution A: Approved for Public Release; Distribution is Unlimited 59

COTS Hardware Impacts

 Key steps for Design & Implementation Hazard Analysis:

 Analyzing COTS for introduction of new hazards

 Developing new or modified requirements and software
safety test cases

 Creating and coordinating mitigations and test cases

 Documenting special COTS implementation safety
requirements and COTS SCI

Emphasis should be placed on identifying software
mitigations for any potential hazards introduced by data
marshalling (i.e., scrambled data fields in legacy
messages, message latencies), if applicable, or COTS
equipment failures (e.g., failures induced by temperature,
shock, or humidity).

Distribution A: Approved for Public Release; Distribution is Unlimited 60

COTS Hardware Impacts

 Key steps for Software Test & Validation:

 Supporting software and integration testing

 Providing safety support for IV&V

 Analyzing test results related to data marshalling or
equipment failure response

 Verifying new or modified safety requirements and
safety related functions

 Providing evidence to support safety analysis and
verification of the COTS operating environment changes

Emphasis should be placed on testing data marshalling
(i.e., scrambled data fields in legacy messages,
unacceptable latencies), if applicable, and COTS
equipment failures (e.g., failures induced by temperature,
shock, or humidity).

Distribution A: Approved for Public Release; Distribution is Unlimited 61

COTS Hardware Impacts

 Key steps for Regression Testing:

 Analyzing safety functionality and safety data and
structure to be maintained through any change

 Developing new or modified tests to verify and validate
safety functionality and safety data and structure

Emphasis should be placed on testing data marshalling
(i.e., scrambled data fields in legacy messages,
unacceptable latencies), if applicable, and COTS
equipment failures (e.g., failures induced by temperature,
shock, or humidity).

Distribution A: Approved for Public Release; Distribution is Unlimited 62

COTS Hardware Impacts

 Key steps for analysis and verification:

 Supporting customer integration and certification
testing

 Providing safety evidence for safety review authority to
support request for operational use

Emphasis should be placed on documenting validated
mitigations that ensure safe response for any potential
hazards introduced by data marshalling or COTS
equipment failures.

Distribution A: Approved for Public Release; Distribution is Unlimited 63

 Design & Implementation Hazard Analysis

 Ensure proactive involvement of Safety in programming
language selection

 A primary C++ issue: thread safety

 A primary Java issue: guaranteeing latencies

Programming Language

Distribution A: Approved for Public Release; Distribution is Unlimited 64

 Key potential Programming Language impacts to safety

 For Java:

 How will safety critical timing requirements be
guaranteed?

 For multi-threaded C++ and Java:

 How will thread safety be analyzed?

 Has potential for deadlock of threads been eliminated
(two or more threads mutually blocking each other
“forever” over two or more shared resources)?

 Are all safety critical shared data/resources protected
through a proper mutual exclusion mechanism (e.g.,
spin locks, semaphores, monitors, critical sections)?

Programming Language

Distribution A: Approved for Public Release; Distribution is Unlimited 65

 Key steps for Design & Implementation Hazard Analysis:

 Analysis for introduction of new hazards

 Developing new or modified requirements and software
safety test cases

 Creating and coordinating mitigations and test cases

Emphasis should be placed on identifying software
mitigations for any potential hazards introduced by Java or
C++ (e.g., timing impacts from Java, corruption of shared
data or deadlock from incorrect thread synchronization).

Programming Language

Distribution A: Approved for Public Release; Distribution is Unlimited 66

 Key steps for Software Test & Validation:

 Supporting software and integration testing

 Providing safety support for IV&V

 Analyzing test results related to safety critical timing
and safety critical processing under extreme load and
stress

 Verifying new or modified safety requirements and
safety related functions

Emphasis should be placed on testing software for any
potential hazards introduced by Java or C++ (e.g., timing
impacts from Java, corruption of shared data or deadlock
from incorrect thread synchronization).

Programming Language

Distribution A: Approved for Public Release; Distribution is Unlimited 67

 Key steps for Regression Testing:

 Analyzing safety functionality and safety data and
structure to be maintained through any change

 Developing new or modified tests to verify and validate
safety functionality and safety data and structure under
extreme load and stress

Emphasis should be placed on testing software for any
potential hazards introduced by Java or C++ (e.g., timing
impacts from Java, corruption of shared data or deadlock
from incorrect thread synchronization).

Programming Language

Distribution A: Approved for Public Release; Distribution is Unlimited 68

 Key steps for Analysis and Verification:

 Supporting customer integration and certification
testing

 Providing safety evidence for safety review authority to
support request for operational use

Emphasis should be placed on documenting validated
safety critical timing and functionality under load and
stress that ensure absence of impacts from introduction of
Java or C++.

Programming Language

Distribution A: Approved for Public Release; Distribution is Unlimited 69

Development Paradigm

 Design & Implementation Hazard Analysis

 Functional granularity of applications (more processes,
more inter-process communication)

 Move from function-oriented to object-oriented (how
functionality is mapped to objects, and vice versa)

 Move toward data-centric system (DDS PubSub, SOA)

Distribution A: Approved for Public Release; Distribution is Unlimited 70

Development Paradigm

 Key potential Development Paradigm impacts to safety

 Moving to object-oriented design:

 How will legacy functional requirements be mapped
to new object-oriented design? (Will internal
application complexity increase?)

 Moving to more processes:

 How will safety-related system-level timing be
guaranteed?

 How will safety-related system-level (distributed)
control be maintained?

Distribution A: Approved for Public Release; Distribution is Unlimited 71

Development Paradigm

 Key steps for Design & Implementation Hazard Analysis:

 Analysis for introduction of new hazards

 Developing new or modified requirements and software
safety test cases

 Creating and coordinating mitigations and test cases

Emphasis should be placed on identifying software
mitigations for any potential hazards introduced by new
paradigm (e.g., end-to-end timing, distribution of system
control).

Distribution A: Approved for Public Release; Distribution is Unlimited 72

Development Paradigm

 Key steps for Software Test & Validation:

 Supporting software and integration testing

 Providing safety support for IV&V

 Analyzing test results related to safety critical timing
and safety critical processing under extreme load and
stress

 Verifying new or modified safety requirements and
safety related functions

Emphasis should be placed on testing software for any
potential hazards introduced by the development
paradigm (e.g., end-to-end timing, distributed
functionality, loss system control).

Distribution A: Approved for Public Release; Distribution is Unlimited 73

Development Paradigm

 Key steps for Regression Testing:

 Analyzing safety functionality and safety data and
structure to be maintained through any change

 Developing new or modified tests to verify and validate
safety functionality and safety data and structure under
extreme load and stress

Emphasis should be placed on testing software for any
potential hazards introduced by new paradigm (e.g., end-
to-end timing, system control).

Distribution A: Approved for Public Release; Distribution is Unlimited 74

Development Paradigm

 Key steps for Analysis and Verification:

 Supporting customer integration and certification
testing

 Providing safety evidence for safety review authority to
support request for operational use

Emphasis should be placed on documenting validated
safety critical timing and functionality under load and
stress that ensure absence of impacts from introduction of
new paradigm.

Distribution A: Approved for Public Release; Distribution is Unlimited 75

COTS Software Hazards

• Document plausible COTS software service failures and
their potential safety impact

– Consider transient and persistent service
failures

• Document mitigations needed for those service failures
with safety impact

• Map the mitigations to system requirements or design

• Ensure the mitigations will be adequately tested

Distribution A: Approved for Public Release; Distribution is Unlimited 76

COTS Software Hazards

 Use a FMECA-style approach to identify potential hazards
or causal factors

 Identify new failure modes and their potential safety
impacts (e.g., failures of omission, commission,
incorrect result, late service, early service)

 Identify mitigations for failures with safety impacts

 Match mitigations with requirements and design

 Identify testing for the mitigations (e.g., fault injection)

 Identify lost legacy mitigations

 Identify replacement mitigations for legacy (Non-COTS)
failures with safety impacts

 Match mitigations with requirements and design

 Identify testing for the mitigations (e.g., fault injection)

Distribution A: Approved for Public Release; Distribution is Unlimited 77

COTS Software Hazards

New Mitigations

• COTS software often brings new (perhaps better)

means of mitigating non-COTS hazards

• Document COTS software mitigations for non-COTS

hazards

• Ensure the mitigations will be adequately tested

Distribution A: Approved for Public Release; Distribution is Unlimited 78

Windows® Specific Considerations

• Risk Reduction Hierarchy

• Safety Considerations When Assessing

the Use of Windows®

Where would you considerer using

Windows® operating system within

the Robin Hood Missile System?

Distribution A: Approved for Public Release; Distribution is Unlimited 79

Risk Reduction Hierarchy

• The goal of this policy document is to provide means by which the software

developer/maintainer can minimize the safety risk associated with use of Windows® .

To that end one should try to eliminate or at least mitigate the safety risk of the using

Windows® by utilizing the following risk reduction hierarchy and safety risk

assessment process.

• 1. Do not use Windows® in any manner which could affect safety significant

processing (i.e. select a different OS for safety significant processors).

• 2. Identify and employ techniques to isolate the Windows® OS from the safety

critical processing and prevent Windows® anomalies from leading to or contributing

to any type of mishap.

• 3. Analyze the behavior of Windows® and its influence on the safety significant

functions and validate analysis results through tests.

• 4. Implement procedural mitigations to reduce the impact of Windows® anomalies

on safety signification functions.

• For any of the above, document the safety risk. Any lack of detailed design

information associated with Windows® is likely to translate to additional safety risk

depending on the mitigation method selected from the above hierarchy.

Distribution A: Approved for Public Release; Distribution is Unlimited 80

Safety Considerations When Assessing the

Use of Windows®

• Design Considerations

– What steps were taken to eliminate or minimize the influence of the OS on the safety critical processing?

– Describe the design techniques employed to mitigate the safety impact of the OS and potential OS failures.

• Architecture Analysis

– How does the system architecture contribute to the safety impact of using Windows® ?

– Does the system design include wrappers or other forms of protection between the safety significant

application and the OS?

• Objectives of Safety Analysis and Testing

– Determine the potential for OS instability causing safety significant functions to operate anomalously.

– Determine the effect of memory management failures, including those related to data corruption and

execution paths excursions.

– Determine the potential for OS failure (system crash) to inhibit the operation of safety significant hazard

detecting and mitigating functions.

• Further Considerations

– Windows® is a general purpose, performance based operating systems, that is not designed with safety

significant use in mind. Many performance based decisions, such as lack of strict memory management,

introduce significant risk when carrying out safety significant functions.

– Windows® is prone to security vulnerabilities, which could also translate to safety vulnerabilities.

Additionally, the need for security based upgrades to the OS could lead to functional uncertainties, which

could become safety

Distribution A: Approved for Public Release; Distribution is Unlimited 81

System

Definition and

Software Safety

Planning

Software

Requirements

Hazard Analysis
(SwCI 1-3)

Software

Design Hazard

Analysis
(SwCI 1-2)

Formal

Review

Start

Fleet Release

Top-Level Process

Regression

Testing

Defect

ResolutionSub-Process
Fleet Anomaly

Reporting

Software Criticality Matrix

Software

Architectural

Hazard Analysis
(SwCI 1-3)

Determine

Software

Criticality Index

(SwCI)

Code Level

Hazard

Analysis
(SwCI 1)

Software Testing and

Verification
(SwCI 1-4)

In-depth Safety - Specific

Testing
(SwCI 1-3)

Safety - Specific

Testing
(SwCI 4)

Operator

Documentation

Safety Review

Assessing the Remaining Safety Risk attributed

to the system software

Distribution A: Approved for Public Release; Distribution is Unlimited 82

Incomplete LoR Risk Assessment

Distribution A: Approved for Public Release; Distribution is Unlimited 83

Software Hazard Causal Factor

Risk Assessment Criteria

